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Fiber-reinforced composite (FRC) molding compounds 
with micromechanic requirements for fiber lengths longer 
than critical length (Lc) are now the most important break-
through in Dentistry since the amalgam. The Lc is a measure 
of the minimum perfectly aligned fiber length dimension 
needed before maximum fiber stress transfer starts to oc-
cur within the cured resin [1-3]. Mechanical properties test-
ed on flexural strength, yield strength, modulus, resilience, 
work of fracture (WOF), critical strain energy release (SIc), 
critical stress intensity factor (KIc) and Izod impact tough-
ness for FRCs using pure quartz fibers have shown large 
statistically significant increases over the dental particu-
late-filled composites (PFCs) as 3M Corp. Z100® and Kerr 
Corp. Herculite® [4-10] and a PFC with microfibers that 
cannot satisfy Lc as Alert® from Jeneric Pentron [5-8,10]. In 
addition, FRCs have shown large statistically significant in-
creases for all mechanical properties tested except modulus 
when compared to a widely used amalgam alloy Tytin® from 
Kerr Corp. [9,10]. Further, FRCs have shown other greatly 
improved properties for wear less than enamel [10,11], sig-
nificantly increased condensing packability force with sig-
nificant larger interproximal contacts [10,12] and ability to 
incorporate the antimicrobial triclosan without PFC sticky 
glueyness [10]. Industrially FRCs are accepted as high-per-
formance molding compounds that can pack with control to 
form into intricate geometric cavities and used extensive-
ly in the electrical and automotive industries so that FRC 

development for Dentistry can proceed on firm dedicated 
principles.

Common problems with poor service longevity for den-
tal PFCs when compared to amalgams [13-21] accentuate 
the importance for dental FRC molding compound use as 
an amalgam alternative [10]. Evidence-based randomized 
controlled clinical trials over 5 to 7 years have determined 
that the current PFCs used in dentistry fail at a rate 2 to 
3 times greater than the amalgam [16,17,19,20]. Both the 
PFCs and amalgams generally fail due to secondary caries 
at the margins where PFC secondary caries failure rates 
have been shown to be 3.5 times greater than amalgams 
[17]. Recent accurate mechanical tests show that PFCs 
have an extremely low modulus compared to the amalgam 
modulus that can be compared much better to the modulus 
for enamel [9,10]. Subsequent lower dental PFC modulus 
filling material that deflects much greater should be more 
susceptible to increased interlaminar shear stress debond-
ing at a higher modulus tooth adhesive interface that helps 
to account for more occlusal marginal leakage with related 
secondary decay [9,10]. On the other hand, FRC molding 
compounds can have much higher moduli that are closer to 
the modulus of amalgam [9,10]. Larger occlusal fillings and 
restorations with more than three surfaces then accentuate 
PFC failures [16,17]. Subsequent larger fillings with more 
margin exposure to occlusal loading would increase the 
probability that debonding occurs at a margin [9,10]. Also, 
the ADA has recommended that dental PFCs not be used in 
“stress-bearing” areas periodically since 1994 [22-24]. Al-
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though accurate mechanical tests comparing dental PFCs to 
amalgams show superior PFC properties for strengths and 
fracture toughness [9], moisture adsorption greatly reduces 
dental PFC strength [25] that could be accelerated by low 
modulus PFC strain-related microcracking to determine the 
eventual fracture failure in larger PFC fillings [9,10]. 

PFCs have many other problems that can account for 
increased secondary caries compared to amalgams. PFCs 
wear at a much greater rate than amalgams with much 
deeper related marginal ditching [26] that would tend to 
collect more bacteria in a pool next to margins on the oc-
clusal surface [10,26]. Also, PFC wear rates increase with 
wider cavity sizes correlated with reduced “sheltering” by 
the enamel margins [27]. In addition, PFCs were shown to 
require 7 - 8 times more repairs than amalgams [16]. Den-
tal PFCs are extremely technique sensitive [28,29] while the 
amalgam is far easier to fill a cavity preparation than the PFC 
[30-36]. Dental PFCs require about double the time to finish 
as a similar amalgam [31]. The dental PFC is a tacky paste as 
a difficult material to pack due to low viscosity or consisten-
cy where matrix resins further have a tendency to adhere 
to packing instruments resulting in noticeable voids [37]. 
Subsequent sticky tack and low consistency in dental PFCs 
are then known to produce problems related to class II fill-
ings with voids in the proximal box [9,10,38-43], overhangs 
difficult to remove [9,10,30,36] and inadequate interprox-
imal contacts [30,32,34-36,39,44-55] with food impaction 
[34,56-59]. Also, poor interproximal contacts are associat-
ed with a higher caries risk [34]. Consequential plaque is 
found 3.2X more frequently on interproximal margins with 
dental PFCs than amalgam [60] and interproximal second-
ary decay has been detected 5.4 times more frequently on 
the gingival margin in dental PFCs than amalgams [15]. As 
a related concern for voids in the dental PFC proximal box, 
the ADA Council on Dental Materials expressed alarm early 
in 1980 standard requirements that radiopacity be measur-
able for the detection of voids on x-rays [40]. Conversely, 
fibers greatly increase polymer consistency so that FRCs 
pack with positive controlled pressure into complex mold 
cavities to prevent void formation such as in the proximal 
box [9,10,12]. Further, FRCs have shown large significant 
statistically improved reductions in voids over dental PFC 
polymerization shrinkage test samples (p < 0.00001), in-

creased interproximal contact areas over both high-viscos-
ity Tytin® FC amalgam and Z100® PFC (p < 0.0001), and 
much higher packing forces than both high-viscosity Tytin® 
FC amalgam and Z100® PFC (p < 0.001) [10,12].

The FRC mechanical properties in a Z100® PFC matrix 
for different fiber lengths from Lc at approximately 0.5 mm 
for a 9 µm diameter quartz fiber and longer lengths up to 
3.0 mm are compared with a Z100® PFC, Alert® PFC with 
microfibers well below Lc and Tytin® amalgam, Table 1 [9]. 
For the FRC with fiber lengths of 0.5 mm, at the Lc of 0.5 
mm most of the fiber debonds from the polymer matrix that 
fails before the fiber breaks so that the full strength of the 
fiber can not be transferred through the composite. Conse-
quently, small reductions in many mechanical properties 
occurred for the FRC at the 0.5 mm length when compared 
to the same polymer matrix composed of Z100® PFC. In 
fact, Alert® with microfibers well below Lc resulted in low-
er mechanical results for all properties when compared to 
the Z100® PFC probably due to a large extent from microfi-
ber debonding that creates detrimental defects during the 
different loading conditions. But, as fiber lengths increase 
above Lc, increasing the fiber length to fiber diameter or 
aspect ratio increases strengths and modulus [5,10]. Fur-
ther, increasing fiber length with aspect ratio above the Lc 
increases all fracture toughness properties for resilience, 
WOF, SIc, and KIc [5,10]. Subsequent lower mechanical prop-
erties for strength would then increase bulk fracture while 
lower fracture toughness properties would increase mar-
ginal chipping. Also, as fibers with some of the highest mod-
uli known and above Lc bond well along the cavity walls at 
the occlusal margins interlaminar shear with the tooth and 
debonding related to secondary caries is expected to dimin-
ish greatly.
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By related FRC strength improvements wear rates are re-
duced as fibers better support surface loading conditions and 
in particular as the fiber lengths become longer than the wear-
ing plowing grooves [61,62]. FRCs with high modulus fibers 
reduce microcracking and water adsorption related to lower 
strain [63,64] that should further reduce wear. In fact, during 
a typical University of Alabama at Birmingham 3-body gener-
alized wear simulator test at 400,000 cycles on a flat occlusal 
tooth sample corresponding to 3 clinical years of service FRC 
molding compound with fibers above Lc produced wear less 
than enamel. Accordingly, FRC wear produced a smooth filling 
material transition with the enamel margin. Conversely, the 
Alert® PFC with microfibers below Lc wears more than enamel 
to produce the characteristic material depression with ditch 
trenches at the enamel margins [10,11]. Profilometer tracings 
of the wear surfaces for an FRC with quartz fibers above Lc and 
the Alert® PFC with microfibers that were well below Lc are 
shown in Figure 1 [10,11]. Although amalgams wear much 
less than dental PFCs, amalgams still wear more than enam-
el to create small depressions at the margins [26] and micro-
fills that wear slightly more than amalgams nevertheless fail 
from low fracture toughness properties resulting in margin-
al fracture [65,66]. While the polymer matrix is sheltered by 
nanoparticulate that fit closer together and do not debond by 
wear the larger particulate of microhybrid PFCs shear under 

Fiber Length (mm) 
30wt% (28.2 Vf)

Flexural 
Strength (MPa)

Modulus 
(GPa)

Yield Strength 
(MPa)

Resilience 
(kJ/m2)

WOF 
(kJ/m2)

SIc  
(kJ/m2)

KIc 

(MPa*m1/2)
Strain at 

Peak Load
0.0 mm (PFC) 

Z100® 3M
117.6 

(0.0012)
19.5 

(0.00102)
95.4 

(0.01337)
3.03 

(0.01882)
4.48 

(5.1x10-5)
0.036 

(0.16055)
1.71 

(0.06584)
0.0079 

(0.9740)
0.5 mm 
(FRC)

113.8 
(0.1399)

23.0 
(0.0008)

92.8 
(0.0372)

2.35 
(0.0400)

3.91 
(0.0984)

0.075 
(0.1794)

1.93 
(0.07953)

0.0062 
(0.9189)

1.0 mm 
(FRC)

173.6 
(0.00318)

26.2 
(0.001875)

126.1 
(0.00018)

3.84 
(0.00083)

8.7 
(0.01879)

0.097 
(0.0584)

2.77 
(0.00797)

0.0084 
(0.2993)

2.0 mm 
(FRC)

373.9 
(5.2x10-5)

34.0 
(0.00116)

329.8 
(0.00168)

19.7 
(0.00287)

28.2 
(0.00046)

1.882 
(0.0338)

11.01 
(0.00579)

0.0121 
(0.1290)

3.0 mm 
(FRC)

374.9 
(2.2x10-8)

31.5 
(0.01236)

343.5 
(0.00014)

23.3 
(0.00348)

30.1 
(4.2x10-5)

2.4 
(0.00296)

12.01 
(3.89x10-5)

0.0131 
(0.0677)

Alert® (PFC) with 
microfibers

90.4 
(0.7057)

17.6 
(0.00019)

62.3 
(0.9791)

1.52 
(0.0440)

3.23 
(0.0077)

0.034 
(0.2950)

1.33 
(0.7523)

0.0069 
(0.7130)

Amalgam 
Tytin®

86.0 43.6 62.6 0.67 1.40 0.013 0.91 0.0078

Table 1: Averages and T-test (p value) Comparisons Between Composites and Amalgam.

loading conditions into the polymer matrix and debond to 
accelerate wear and produce a much deeper marginal ditch-
ing trench [27].

Figure 1: Profilometer wear tracings. (A) FRC with fibers above 
Lc with less wear than enamel transition with a smooth clean-
er surface at the margin (B) PFC Alert® with microfibers be-
low Lc show margins ditched with greater wear than enamel.

Scanning Electron Microscopy (SEM) of the same wear 
sample surfaces show the discontinuous chopped FRC 
molding compound with fibers greater than Lc to be vast-
ly smoother and polished even at twice the magnification, 
Figure 2A, when compared to the rough surface for the PFC 
Alert® with short microfibers below Lc that lie in random 
planar fashion, Figure 2B [10,11]. Fibers above Lc will not be 
found on the wear surface where “sheltering” of the Z100® 
spherical nanohybrid particulate polymer matrix is accen-
tuated by fibers that align parallel to the occlusal surface 
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from packing forces. An SEM of the FRC compound at much 
higher 5000X magnification shows how a high-strength 9 
µm diameter quartz fiber wears by thinning until sufficient-
ly skeletal to break up into fine flat plate-like particulate 
with sizes from much less than 200 nm to about 3 µm that 
press fairly level back into the Z100® PFC polymer matrix, 
Figure 2C. Subsequent thin flat particulate would not be ex-
pected to shear debond from the composite matrix by wear 
loading but rather break down further into smaller parti-
cles. Finer nanoparticulates that debond from the polymer 
matrix might then tend to even polish the FRC across a dry-
er surface above the flat sample enamel plane. On the other 
hand, depressions that exist following PFC wear would pool 
fluids and bacteria that tend to dissolve the polymer for in-
creased wear and marginal secondary decay. Also, the FRC 
polymer matrix may experience creep from wear pressure 
that results in the scission of some polymer molecules thus 
leaving a free radical on either side of the dissociated bond. 
Subsequent dangling free radicals may possibly then reini-
tiate free-radical crosslinking of methacrylate end groups 
with coupling to quartz particulate and better help explain 
the ideal smooth wear surface created in Figure 2A.

Figure 2: SEMs (A) FRC polished smoothly with ex-
tremely low wear surface 200X magnification scale bar 
100 µm (B) Rough PFC Alert® with debonding microfi-
ber wear surface debris 100X magnification scale bar 200 
µm. (C) FRC 5000X magnification reveals how a quartz 
fiber wears thin into flat plate-like particulate produc-
ing the smooth surface in figure 2A, scale bar 5 µm.

PFCs have developed 3.2 times more plaque than amal-
gam on class II margins [60]. Leachable monomers of dental 
PFCs [67,68] have been found capable of supporting bacte-
rial growth [67,69]. Further, dental PFCs can support decay 
under restorations that do not occur below amalgams un-
der identical conditions [67]. However, amalgam has silver 
antimicrobial properties [70-74]. Similarly, high-viscosity 
FRC consistency allows incorporation of broad-spectrum 

triclosan antimicrobial whereas lower viscosity PFCs are 
deprived of entire consistency and become gluey when tri-
closan is added by disrupting the resin and nanoparticulate 
weak secondary bonds [75-77]. The nonpolar or hydropho-
bic antimicrobial triclosan is a wetting agent to reduce vis-
cosity during the mixing stage for resin and fiber incorpo-
ration, but and on the other hand is a toughening agent for 
the cured polymer to further increase flexural and adhesive 
bond strengths [75-77]. The hydrophobic or nonpolar prin-
ciples for chemistry with triclosan should also reduce mate-
rial breakdown by repelling polar molecules such as water 
and acid. An unusual odd alarmist triclosan controversy 
over bacterial resistance from unwarrantable extreme lab-
oratory conditions that cannot be found in a normal micro-
environment has been unjustifiable without any bacterial 
resistance to triclosan reported in over 40 years resulting 
in a government report recommendation for triclosan use 
wherever a health benefit is possible [76,77] as in dentistry. 
In some similar manner as triclosan disruption of second-
ary bonding needed for PFC consistency [75-77], incorpo-
ration of water-repelling hydrophobic low-viscosity resin 
that does not form secondary hydrogen bonds is not effec-
tive in providing PFCs with adequate consistency [10]. On 
the other hand, accentuated consistency with high-viscosi-
ty FRCs above Lc allows incorporation of more hydrophobic 
low-viscosity resin with a reduction in leachable monomer 
to suggest that much better polymer systems can be de-
signed for future dental filling materials [10]. Also, higher 
FRC packing forces squeeze monomer, resin and particu-
late away from the molding compound fiber network and 
cavity margins to seal the adhesive bond with the insolu-
ble high-modulus quartz fibers, nanofibers and particulate 
[4,9,10]. Subsequent elevated concentrations of insoluble 
fibers that align parallel to the cavity walls and occlusal 
plane with particulate along the margins should then better 
provide an enduring seal as a thin adhesive bond moisture 
barrier [9,10,63,78].
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