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Abstract

Genetic pathways that control cardiac embryogenesis follows intricate temporal patterns. Concept of first and second heart fields, 
a population of potent cardiac cells that initiate the simple heart tube, has been deciphered. Role of genes and various controlling 
factors in multiplex regulatory systems that drive organogenesis that is altered in disease needs to recognised and is one of the great-
est challenges in science. Understanding and control of these steps may lead to a revolution in auto engineered artificial organs and 
targeted therapy of congenital heart disease and early detection of these lesions. 
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Early cardiogenic genes

In Caenorhabditis elegans, the rhythmically contracting pharynx is the most primitive form of heart field [1]. Cephalochordate Amphi-
oxus has a contractile vessel [2]. Cardiac transcription factors NK2 Homeobox 5 (NKX2.5) or Myocyte Enhancer Factor 2 (MEF2) homolo-
gues find expression in muscles of pharynx of these nematodes.

During cardiac embryogenesis in Drosophila or humans transcription factors NKX2, MEF2, GATA binding protein (GATA), T‐box and 
neural crest derivatives are involved [1]. These were first identified in Drosophila before their role in vertebrate heart development was 
noted [3]. Family of T‐box transcription factors play a key role in the regulation of cardiomyocyte identity. Uniqueness of expression 
determines the electrical pattern of heart. Most cardiac regions express TBX5 and TBX20. TBX5 is expression inclined from the venous 
pole to the right ventricle with a notable absence in the region of outflow tract. Both are important activators of gene expression in the 
chamber development. TBX2 and TBX3 act as repressors of gene programming of the inflow tract, or venous pole, atrioventricular canal 
and outflow tract regions – leading to another developmental destiny. Outflow tract precursors of the heart, TBX1 is expressed and TBX18 
are expressed at the venous poles. When expression of these genes are affected congenital heart defects result, showing their importance 
in cardiac development [4]. The identification of the first Drosophila cardiogenic gene Tinman (TIN) [3,5,6]. has led to the cloning of the 
mouse NKX2‐5 gene [7,8]. Transcription factors and signalling pathways involved in invertebrate cardio genesis, are needed for verte-
brate heart development with similarities in the gene regulatory network (GRN) [1,9]. The early polarity expression of SERCA2 (calcium 
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pump of the endoplasmic reticulum) and PLB (phospholamban) is unique as polarity is expressed before commencement of contractions. 
SERCA2 concentration decreases from anterior to posterior regions, while PLB shows complementary distribution [10,11]. In Xenopus, 
the expression of NKX2.5 is restricted to the internal lateral plate of the precardiac crests [12].

Clear regionalization of expression patterns are noted in transcription factor PITX2[13,14]. PITX2 is expressed in the left precardiac 
crest, but not in the right, being configured as the first sign of molecular asymmetry in cardiac embryogenesis. Homeo box factor‐ IRX4, 
expression is restricted to the anterior region of the crest [15]. Cells that express IRX4 constitute the ventricular primordium. Homoge-
nous expression of transcription factors are also noted in precardiac crests‐ TBX 5, SRF (serum response factor), CARP (Cardiac Ankyrin 
Repeat Protein), pCMF1, Midori, c CLP 1 and MESP1 [16‐21].

The Drosophila heart development depends on a regulatory network of TFs homologous to the core factors in mammals, NKX2‐5‐like 
homeo domain factor Tinman, GATA factor Pannier and T‐box factor Dorsocross [22]. TFs, MEIS1 and MEIS2 interact with HOX and PBX 
TFs in cardiac embryogenesis [23,24]. Sequencing of human genome has given the much necessary thrust. Uniqueness of transcription 
rather than the number of protein-coding genes as the evolutionary hall mark for biological diversity is the recent addition of technolo-
gical advances in this field [26‐28]. Selector genes are the master regulators e.g. muscle‐specific TF MyoD1, which induces muscle fate on 
expression induction [29]. Early in embryogenesis allocation of cardiac parentage within a common mesodermal field is subject to anta-
gonistic principles with genetic disruption of transcription factors (TFs) which determines domination pattern of development [30‐32]. 
Hall mark of mammalian cardio genesis is the septation of a single tubular form to create four chambers with different roles and identities: 
two atria and two ventricles with flow direction provided by atrioventricular valves [33]. In mice, the heart tube begins to develop from a 
crescent‐shaped population of progenitors composed of two distinct fields of cells with different behavioural pattern and cell lineage fa-
tes: the first and second heart fields ‐FHF and SHF [34].The FHF originates from the anterior splanchnopleuric mesoderm and gives rise to 
the linear heart tube composed of left ventricle. The SHF is derived from branchial mesoderm situated medial to the cardiac crescent and 
comes to lie dorsally. This population becomes extensive by proliferation, and populates the growing heart at its inflow and outflow tracts 
contributing to the formation of atria, right ventricle, inflow and outflow tract. In mice, cranio‐caudally heart is formed by convergence 
of the FHF progenitors at the midline at around E8.0 and begins to beat owing to the automaticity of myocytes [34]. Linear heart tube 
begins elongating around E8.5, as a result of deployment of SHF cells, it undergoes a spiral looping towards right under the influence of 
the left–right asymmetry genetic network [35]. Precursor cells derived from the neural crest, proepicardial regions and sinus venosus also 
migrate and integrate into the heart, collectively contributing to formation of cardiac ganglia, smooth muscle, and endothelial cells of the 
coronary vessels, and fibroblasts of the interstitial and annulus fibrosus. A number of deeply conserved mammalian cardiac TFs for target 
genes, can be considered to be part of a cardiac kernel including GATA4/6, ISL1, NKX2‐5, MEF2C, SRF, TBX5, and TBX20. Knockout of ker-
nel factors leads to arrested heart development, with phenotypes showing unique features [36‐38]. Combinations of cardiac TFs centred 
on GATA4, TBX5, and MEF2C, with or without the inclusion of specific micro‐RNAs (mi RNAs) or small molecules modulating signalling 
and epigenetic states, reprogram non cardiac embryonic or adult cells to a cardiomyocytes [39,40]. Alternative method of evaluating 
cardiac function in adult flies was by optical coherence tomography (OCT), which was developed in the laboratory of Wolf and Rockman 
[41]. Using OCT [42] screened for molecularly defined deficiencies in the Drosophila chromosome 3Lcan be done. Anterior embryonic 
and extra embryonic mesoderm, MESP1 is expressed from gastrulation and is capable of stimulating cardio genesis [43,44]. Gatekeeper 
of pluripotency ‐ homeodomain factor, OCT4 is involved in early lineage and is co expressed with MESP1 during mouse pluripotent stem 
cell differentiation into cardiac lineages. Here the regulation is dose dependent [45,46]. RNA i‐based genome‐scale with loss of functi-
on screen has been described [47]. Taking advantage of a β‐galactosidase cardiac‐specific expression of MEF2, more than 5800 genes 
have been screened for heart mutant phenotypes by injection of double‐strand RNA (dsRNA) in the developing embryo. 132 genes have 
been identified so far, including genes encoding TFs and cell signalling molecules, involved in different steps of cardiac development. For 
mutants presenting heart defects, genetic screens were conducted in transgenic lines bearing a green fluorescent protein (GFP), allows 
examination of mutant phenotypes in live embryos. 
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At transcriptional and post‐transcriptional levels, the development of the heart is regulated. Specific regulation at the post‐transcrip-
tional level involves small non‐coding RNA molecules called microRNAs (miRs). These regulate gene expression by binding to specific 
sequences within the messenger RNAs and reducing their stability from being translated into proteins. Precise miR activity is required for 
the heart to develop normally and able to respond to challenges such as ischemia and pressure overload. Cardiac enriched miRs which are 
currently known are miR‐1, 133, 206, 208 and 499 [49], with miR‐1 being the most abundant in the adult mouse heart.

MiR‐1 is co‐transcribed with miR‐133a, and has two copies in the mouse genome, miR‐1‐1 on chromosome 2 and miR‐1‐2 on chromo-
some 18 [50], Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation ‐ Tcf3 and Foxa2 ‐ and 
activating inducers Evx1, Grrp1, and MESP1. CRISPR/Cas9‐mediated ablation of the entire Id (Id1‐ 4) family in mouse embryos leads to 
failure of anterior cardiac progenitor specification and the development of heartless embryos [51],

Cardiac jelly from the neural crest triggers directional signals between endocardium and myocardium. The left right asymmetry with 
a loop rightward is due to sense directional flow of extra embryonic coelomic fluid generated by ciliary cells [52]. BMP2/4 expression de-
termines the early cardiogenic crescent formation by NKX2‐5 TFs which are expressed in mesenchymal cells [53]. In protein coding genes 
that are close to lnc RNAs, Hori Y., et al.  [54] found many transcription factor genes that have critical functions for heart development (i.e., 
TBX5, TBX20, NKX2–5, GATA4, GATA6, SALL4, HAND1, HAND2, Wt1, Nr2f1, IRX3 and IRX5). Many of these lnc RNAs were bidirectional lnc 
RNAs (i.e., TBX5, TBX20, NKX2–5, Gata6, SALL4, HAND1, HAND2, Wt1, Nr2f1, IRX3 and IRX5). 

Conclusion
Impact of single or multiple gene variants needs precise delineation if the knowledge is to be applied as a clinical tool, therapeutic 

armamentarium or for genetic engineering. Many foetal tissues reactivate programs of gene expression when damaged, revealing the 
potency inherent in genetic programming. This potential ought to be exploited in regenerative medicine and other genomic therapeutic 
options. Deciphering the spatial and temporal targeted gene expression or gene inactivation could be the lead areas of genomic diagnostic 
and therapeutic interventions of future.
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