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Abstract

Corynebacterium accolens DSM 44278 is a nasal commensal with emerging probiotic potential and relevance to respiratory 
health, including interactions with respiratory pathogens in the upper airway. These properties make C. accolens a promising 
candidate for metabolic engineering, which can benefit from a whole-cell kinetic model to evaluate various engineering proposals 
in silico. However, there is currently no reported whole-cell kinetic model for C. accolens. Therefore, this study constructs a whole-
cell simulatable kinetic model of C. accolens DSM 44278 using an ab initio approach by identifying enzymes from its reference 
genome. The resulting model, caccSM26, comprises 1097 metabolites, 407 enzymes with associated transcription and translation 
processes, and 1182 enzymatic reactions represented as ordinary differential equations using representative kinetic parameters. 
This whole-cell kinetic model serves as a foundational framework for future refinement with organism-specific data and for in 
silico exploration of growth behaviour, regulatory mechanisms, and metabolic engineering strategies in this clinically relevant 
commensal.

Keywords: Whole-Cell Model; Kinetic Model; Differential Equations; AdvanceSyn Toolkit

Introduction

Corynebacterium accolens DSM 44278 is a Gram-positive, non-spore-forming, lipophilic actinobacterium that predominantly 
colonises the human nasal cavity and upper respiratory tract as a commensal [1]. It produces TAG lipases (e.g. LipS1) that hydrolyse host 
triacylglycerols, releasing free fatty acids that have antimicrobial activity against important respiratory pathogens such as Streptococcus 
pneumoniae [2]. Improved respiratory health and a lower risk of pathogen acquisition have been associated with a nasal microbiome 
profile dominated by Corynebacterium species, including C. accolens [3,4]. Recent studies also suggest that C. accolens may influence host 
factors such as ACE2 and TMPRSS2 expression, potentially reducing susceptibility to viral infections like SARS-CoV-2 through both lipase 
activity and receptor modulation [5], indicative of probiotic potential [6]. Furthermore, probiotic evaluations of C. accolens strains from 
healthy human nasal cavities demonstrate adhesion to epithelial cells, competition with pathogens such as Staphylococcus aureus, and 
safety in vivo, supporting translational applications aimed at correcting sinonasal dysbiosis [7]. As the interest to engineer probiotic strains 
increases [8], C. accolens may likely be considered for potential metabolic engineering in the foreseeable future.
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Mathematical models continue to underpin decision-making in metabolic engineering, guiding the exploration of genetic modifications 
long before experimental validation [9,10]. Two modelling paradigms dominate [11,12]: GSMs and KMs. GSMs, built on constraint-based 
principles, primarily predict flux distributions. KMs, however, extend beyond rates to include yield predictions [13]; and are typically 
more straightforward for simulating gene knock-ins [14]. These differences make KMs particularly attractive for evaluating competing 
engineering strategies in silico. Recognising this utility, many researchers have highlighted the growing importance of developing more 
comprehensive kinetic models to support future metabolic engineering work [15,16].

However, there is no whole-cell KM of C. accolens to-date. Hence, this study aims to construct a KM of C. accolens DSM 44278 using ab 
initio approach by identifying enzymes from its genome, and identifying the corresponding reaction from KEGG [17]. The result is a whole 
cell KM of C. accolens DSM 44278, named as caccSM26, using the nomenclature proposed by Cho and Ling [18], which consists of 1097 
metabolites, 407 enzymes with corresponding transcriptions and translations, and 1182 enzymatic reactions.

Materials and Methods

Identification of reactome: The genome of C. accolens DSM 44278 (NCBI RefSeq assembly GCF_023520795.1; NCBI GenBank 
Accession NZ_CP046605.1) was used as source to identify enzymatic genes using the process previously described [14,19,20]. Briefly, 
each enzymatic gene was identified as a presence of complete Enzyme Commission (EC) number in the GenBank record and mapped into 
reaction IDs via KEGG Ligand Database for Enzyme Nomenclature [17]. For example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23) 
catalyses reactions R01158, R01163, and R03012; where the substrates and products of each rection can be identified.

Model development: The model was developed using methodology in Sim., et al. [21]. From BioNumbers, Escherichia coli typically 
carries around 3000 RNA polymerases (BioNumbers 106199) [22], with only 25% actively extending transcripts (BioNumbers 111676) 
[23]. At 22 nt/s (BioNumbers 104109) [24] and 339.5 Da per nucleotide, this results in about 5600 kDa per second of RNA synthesis 
or 9.3e-18 grams per second. Adjusting this rate to a cell volume of 7e-16 litres [25] and dividing it among 4225 protein-coding genes 
(BioNumbers 105443) [26] gives a production estimate of 2.92 micromolar per gene per second. With an average mRNA lifetime of about 
108 seconds (BioNumbers 107666) [27], corresponding to 0.93% degradation per second, the governing equation is d[mRNA]/dt = 
0.00292 - 0.0093[mRNA]. On the translation side, mammalian estimates of 1000 peptides per hour per transcript yield 0.278 peptides per 
second (BioNumbers 106382) [28]; E. coli protein degradation at 1% per hour (2.78e-16 per second) (BioNumbers 109924) [29] gives 
d[peptide]/dt = 0.278[mRNA] - 0.00000278[peptide]. The system was built as a set of ODEs [19,30] with representative kinetic constants 
(kcat = 13.7 per second, Km = 1 mM) [31], written according to the AdvanceSyn Model Specification [32].

Model simulation: The constructed model was tested for simulatability using AdvanceSyn Toolkit [32]. Initial concentrations of all 
mRNA and enzymes were set to 0 mM. Initial concentrations of all metabolites were set to 1 mM except the following which were set to 
1000 mM: (I) C00001 (Water), (II) C00002 (ATP), (III) C00003 (NAD+), (IV) C00004 (NADH), (V) C00005 (NADPH), (VI) C00006 (NADP+), 
(VII) C00007 (Oxygen), (VIII) C00011 (Carbon Dioxide), (IX) C00014 (Ammonia), (X) C00025 (L-Glutamate), (XI) C00031 (D-Glucose), 
(XII) C00037 (Glycine), (XIII) C00041 (L-Alanine), (XIV) C00047 (L-Lysine), (XV) C00049 (L-Aspartate), (XVI) C00064 (L-Glutamine), 
(XVII) C00065 (L-Serine), (XVIII) C00073 (L-Methionine), (XIX) C00097 (L-Cysteine), (XX) C00133 (D-Alanine), (XXI) C00148 (L-Proline). 
The model was simulated using the fourth-order Runge-Kutta method [33,34] from time zero to 3600 seconds with timestep of 0.1 
second, and the concentrations of metabolites were bounded between 0 millimolar and 1000 millimolar. The simulation results were 
sampled every 2 seconds. 

Results and Discussion

The annotated genome of C. accolens DSM 44278 consists of 2337 genes, including 2216 protein coding sequences. 407 unique EC 
numbers consisting of 1182 enzymatic reactions involving 1097 metabolites were identified and developed into a model based on 
AdvanceSyn Model Specification [32]. In addition, 814 ODEs acting as placeholder for enzyme transcriptions and translations were added. 
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We evaluated the caccSM26 model using AdvanceSyn Toolkit [32], and Figure 1 shows that the model runs as intended, demonstrating 
structural soundness and absence of syntax errors as argued in recent model constructions [14,20,35-39]. Whole-cell kinetic models 
often fail during early simulation attempts due to minor inconsistencies, so achieving a successful run is an essential milestone. The 
accumulation of formate and UDP may arise from using uniform median enzyme kinetics [31], which simplify the system for testing but 
distort biological realism. Therefore, the simulation patterns should be interpreted only in the context of model operability. What we put 
forward is a functional whole-cell kinetic backbone for C. accolens DSM 44278, offering a starting point for extensions involving growth 
coupling, regulatory influences, or calibrated enzyme parameters based on empirical measurements [40-42].

Figure 1: Selection of simulation results.

Conclusion

In this study, we present an ab initio whole cell kinetic model of C. accolens DSM 44278, caccSM26; comprising of 1097 metabolites, 
407 enzymes with corresponding transcriptions and translations, and 1182 enzymatic reactions.

Supplementary Materials

Reaction descriptions and model can be download from https://bit.ly/caccSM26. 
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