

The Predictive Utility of C-Reactive Protein in Laparoscopic Cholecystectomy for Acute Biliary Pancreatitis: A Systemic Analysis of Surgical Difficulty and Postoperative Outcomes

Ammar Alkattan*

Associate Consultant at Acute Care Surgery, Hamad Medical Corporation, Qatar and Consultant of General Surgery and Emergency Medicine, Syria

***Corresponding Author:** Ammar Alkattan, Associate Consultant at Acute Care Surgery, Hamad Medical Corporation, Qatar and Consultant of General Surgery and Emergency Medicine, Syria.

Received: October 09, 2025; **Published:** January 13, 2026

Abstract

This systemic analysis critically evaluates the role of preoperative C-reactive protein (CRP) as a predictive biomarker for intraoperative difficulty and postoperative complications in patients undergoing laparoscopic cholecystectomy (LC), particularly in the context of acute biliary pancreatitis (ABP) and related acute biliary pathologies. The synthesis of evidence from ten recent key studies, supplemented by a broader review of the literature, establishes that preoperative CRP is a robust, readily available, and clinically significant independent predictor of adverse perioperative outcomes [1,8,27].

The analysis demonstrates a strong, dose-dependent correlation between escalating preoperative CRP concentrations and the likelihood of encountering a technically challenging surgical environment. Higher CRP levels are consistently associated with increased operative time, a greater degree of intraoperative difficulty as measured by validated scoring systems like the Nassar scale, and, most critically, a significantly elevated risk of conversion from a laparoscopic to an open procedure. The evidence reveals a spectrum of risk associated with different CRP thresholds, ranging from moderate difficulty at levels above 50 - 100 mg/L to a markedly high probability of conversion at levels exceeding 150 - 220 mg/L. This finding suggests that while a single universal cutoff is not practical, a tiered approach to risk stratification based on CRP is highly valuable [5,17,21,29,30].

Furthermore, the predictive utility of CRP extends beyond the operating room. Elevated preoperative CRP levels are identified as a significant predictor in multivariate models for the development of postoperative complications, most notably post-cholecystectomy pancreatitis. This association underscores the concept that a high preoperative CRP reflects a persistent, heightened inflammatory state that increases patient vulnerability to further insults, including those induced by surgical manipulation. Consequently, preoperative CRP also serves as a powerful independent predictor of prolonged hospital length of stay, as it forecasts both a more complex operation and a more complicated recovery [6,34,37].

This report concludes that the integration of preoperative CRP measurement into the clinical assessment of patients with ABP is essential for optimizing surgical planning, resource allocation, and patient management. It proposes a risk stratification framework to guide surgical scheduling, enhance the informed consent process by providing more accurate risk assessment, and tailor postoperative surveillance strategies. While CRP is a potent standalone marker, its predictive power can be augmented by its inclusion in multi-parameter models and through combination with other biomarkers, such as serum albumin. Future research should focus on the prospective validation of this framework and the standardization of outcome definitions to further refine the clinical application of this indispensable biomarker.

Keywords: C-Reactive Protein; Laparoscopic Cholecystectomy; Acute Biliary Pancreatitis

Section 1: The pathophysiological nexus of acute biliary pancreatitis and c-reactive protein

To comprehend the clinical utility of C-reactive protein in the management of acute biliary pancreatitis, it is imperative to first establish the fundamental biological and pathophysiological rationale for its use. CRP is not merely a correlated variable; it is a direct, quantifiable reflection of the underlying inflammatory cascade that drives both the severity of the pancreatitis and the subsequent challenges encountered during surgical intervention. The magnitude of CRP elevation serves as a surrogate for the intensity of a complex systemic response originating from a localized pancreatic insult [1,8,27].

The inflammatory cascade in acute biliary pancreatitis (ABP)

The pathophysiology of acute biliary pancreatitis is initiated by the obstruction of the common bile duct or the ampulla of Vater by a gallstone. This obstruction leads to an increase in pancreatic ductal pressure and, in some cases, a reflux of bile into the pancreatic duct, which is highly corrosive to pancreatic tissue. The primary event, however, is the premature intracellular activation of digestive proenzymes, such as trypsinogen, within the pancreatic acinar cells. This activation triggers a cascade of enzymatic auto-digestion of the pancreatic parenchyma, leading to cellular injury, edema, and localized inflammation [1,8].

This initial local event rapidly escalates into a systemic inflammatory response. Damaged pancreatic cells release a host of pro-inflammatory cytokines, including interleukin-1 (IL-1) and interleukin-6 (IL-6), into the systemic circulation. These cytokines act as powerful signaling molecules that trigger a systemic acute-phase response, centrally orchestrated by the liver. The clinical spectrum of ABP is remarkably wide, ranging from mild, self-limiting interstitial edematous pancreatitis to severe, life-threatening necrotizing pancreatitis, which can be complicated by multi-organ failure. Epidemiological data indicate that while most cases are mild, severe AP carries a mortality rate that can be as high as 36% to 50%. This significant variability in disease progression and outcome underscores the critical need for reliable, early biomarkers to stratify patients and predict severity.

C-reactive protein as a sentinel marker for pancreatitis severity

C-reactive protein is an acute-phase reactant protein synthesized by hepatocytes primarily in response to stimulation by IL-6. Its biological function involves binding to phosphocholine on the surface of dead or dying cells and some bacteria, activating the complement system, and thus aiding in the clearance of necrotic and apoptotic cells. In the context of ABP, the level of circulating CRP is directly proportional to the rate of its synthesis, which in turn is driven by the intensity of the systemic cytokine storm emanating from the inflamed pancreas. The kinetics of CRP are well-characterized; its levels begin to rise within 6 to 8 hours of an inflammatory stimulus, doubling approximately every 8 hours and peaking at around 48 hours. This dynamic profile makes CRP an excellent marker for monitoring the evolution of an acute inflammatory process [7,13,14,27].

A substantial body of evidence validates CRP as a cornerstone biomarker for assessing the severity of acute pancreatitis in general. A recent and comprehensive systematic review and meta-analysis incorporating 41 studies and 6,156 patients confirmed the significant diagnostic value of CRP in this setting. The summary receiver operating characteristic (SROC) analysis yielded an area under the curve (AUC) of 0.85 (95% CI: 0.81-0.88), indicating good diagnostic accuracy for predicting severe AP. This foundational evidence establishes the credibility of CRP as a reliable indicator of the systemic impact of pancreatitis [2,9,11].

The timing of CRP measurement is crucial for its predictive accuracy. The biological lag between the onset of inflammation and the peak of hepatic CRP synthesis means that measurements taken at the time of hospital admission may underestimate the ultimate severity of the disease. The literature consistently demonstrates that a CRP measurement at 48 hours after admission provides a more accurate snapshot of the peak inflammatory response and is therefore more predictive of severity and complications. Several key predictive thresholds have been identified for stratifying pancreatitis severity. An international consensus has long recognized a CRP level greater than 150 mg/L

within 48 hours of admission as a predictor of severe disease. More recent studies, employing more stringent definitions of severity, have suggested an optimal cutoff of greater than 190 mg/L at 48 hours. Furthermore, some research indicates that the interval change in CRP is a comparable predictor to the absolute value; a rise of more than 90 mg/L from admission to the 48-hour mark is also highly predictive of a severe course. While multifactorial scoring systems such as APACHE II and Ranson's criteria exist, they can be cumbersome to calculate and require multiple data points over 48 hours. CRP offers a simple, inexpensive, widely available, and dynamic alternative or adjunct for early risk stratification. Its utility can be further enhanced when combined with other markers, such as serum albumin, to form the CRP-to-Albumin Ratio (CAR). This ratio has the advantage of incorporating a measure of the patient's nutritional status and physiological reserve, potentially offering a more nuanced prognostic assessment [3,7,13-15].

Section 2: Preoperative C-reactive protein as a predictor of intraoperative difficulty in laparoscopic cholecystectomy

The systemic inflammation reflected by an elevated CRP level has direct local consequences in the right upper quadrant, creating a hostile surgical environment. This section synthesizes the extensive evidence linking preoperative CRP concentrations to the technical challenges encountered during laparoscopic cholecystectomy for ABP and other acute biliary conditions. The analysis progresses from defining and quantifying surgical difficulty to examining CRP's predictive power for specific intraoperative events, culminating in its ability to forecast the need for conversion to an open procedure [21,29,30].

Quantifying surgical difficulty: Metrics and definitions

The concept of a "difficult" laparoscopic cholecystectomy is multifaceted, and the literature employs a range of metrics to quantify it. Many studies utilize a composite definition, where a procedure is classified as difficult if it meets one or more objective criteria. These commonly include prolonged operative time (often defined as greater than 60 or 90 minutes), significant intraoperative bleeding, the presence of dense pericholecystic adhesions, challenging dissection of Calot's triangle, or the ultimate need for conversion to open surgery [21,29,30].

To introduce a greater degree of objectivity and standardization, several studies utilize validated intraoperative grading systems. The Nassar scale is one such tool, often referenced in the literature reviewed. This scale provides a structured method for grading operative difficulty from I (easiest) to V (most difficult) based on a systematic assessment of the operative findings, including the appearance of the gallbladder, the state of the cystic pedicle, and the extent and nature of associated adhesions. The use of such scales allows for more consistent and comparable reporting of surgical difficulty across different studies and institutions [5,17].

Among all metrics, conversion to open cholecystectomy is widely regarded as the most definitive, albeit undesirable, surrogate for a difficult laparoscopic procedure. Conversion represents the point at which the challenges of the laparoscopic approach-such as obscured anatomy due to inflammation, bleeding, or dense fibrosis-become insurmountable, and the surgeon determines that proceeding laparoscopically would compromise patient safety. Therefore, predicting the likelihood of conversion is a primary goal for any preoperative risk assessment tool [4,16,17,21,29,30].

CRP and the challenge of dissection: From inflammation to adhesion

A consistent and compelling finding across numerous studies is the direct, stepwise correlation between preoperative CRP levels and increasing grades of intraoperative difficulty. The systemic inflammatory response measured in the blood translates directly to localized tissue changes that complicate surgery. A landmark study by Ng, *et al.* analyzed 804 emergency biliary patients and found a highly significant association ($p < 0.001$) between CRP concentration and the Nassar difficulty grade. The mean preoperative peak CRP level progressively increased with each grade of difficulty: 64.7 mg/L for grade I, 69.6 mg/L for grade II, 98.2 mg/L for grade III, 117.5 mg/L for grade IV, and 193.1 mg/L for grade V. This dose-response relationship has been corroborated by numerous other investigations, all demonstrating that higher preoperative CRP values are associated with more challenging dissections and longer operative times [5,17].

The pathological basis for this correlation is clear. Elevated CRP is a marker of severe inflammation, which manifests locally as gallbladder wall edema, pericholecystic fluid, fibrinous adhesions, and, in severe cases, tissue ischemia and gangrenous cholecystitis. These pathological changes obliterate normal tissue planes, obscure the critical anatomy of Calot's triangle, and increase the risk of bleeding and bile duct injury during dissection. The link between CRP and severe gallbladder pathology is well-established; one study noted that a CRP level greater than 200 mg/dL had a 100% negative predictive value for gangrenous cholecystitis, meaning no patient with a CRP below this level had this severe complication.

Building on this correlation, researchers have sought to identify specific CRP thresholds that can preoperatively stratify patients into low- and high-difficulty groups. Ng, *et al.* performed a receiver operating characteristic (ROC) curve analysis and identified a peak preoperative CRP cutoff value of 90 mg/L for predicting high-grade operative difficulty (Nassar grade IV or V). This threshold demonstrated a sensitivity of 71.5% and a specificity of 70.5%, with an AUC of 0.78, indicating good predictive accuracy. Another study by Díaz-Flores, *et al.* focusing specifically on acute calculous cholecystitis, proposed a lower cutoff of ≥ 11 mg/dL (110 mg/L) as being associated with the highest odds of a difficult LC. The variability in these cutoffs highlights that the optimal threshold can depend on the specific patient population and the precise definition of "difficulty" used. This does not invalidate the findings but rather suggests a continuous spectrum of risk, where the probability of a difficult operation increases progressively with the CRP level [5,17].

The critical endpoint: Conversion to open cholecystectomy

The predictive power of CRP is most pronounced when examining the critical endpoint of conversion to open surgery. Multiple studies employing multivariate logistic regression analysis have demonstrated that an elevated preoperative CRP is a powerful and independent predictor of conversion, even after accounting for other potential confounding factors such as patient age, sex, and white blood cell (WBC) count [21,29,30].

The magnitude of CRP elevation observed in patients who ultimately require conversion is often dramatic. A pivotal pilot study by Mok, *et al.* which analyzed 291 patients, provides a stark illustration of this trend. The median CRP for patients who underwent a standard, uncomplicated LC was merely 7.05 mg/L. This rose to 67.40 mg/L for those who had a difficult LC but were completed laparoscopically. In stark contrast, the median CRP for patients whose procedure was converted to open was 286.20 mg/L. This more than 40-fold increase from uncomplicated to converted cases underscores the profound association between the degree of systemic inflammation and the failure of the laparoscopic approach. Similar findings of extremely high median CRP values in converted patients (e.g. 280.5 mg/L) have been reported by other research groups [21,29,30].

This strong association has led to the identification of several high-risk CRP cutoff values that can serve as clinical "red flags" for an exceptionally high probability of conversion. These thresholds represent different points on the risk spectrum [21,29,30]:

- **CRP > 100 mg/L:** In a study of 149 emergency cholecystectomies, a preoperative CRP greater than 100 mg/L was found to be an independent predictor of a difficult procedure ($p = 0.041$ on multivariate analysis), a category which included conversions [21,29,30].
- **CRP > 165 mg/L:** A study by Wevers, *et al.* developed a useful scoring system for predicting conversion risk in acute cholecystitis. They identified age > 65 years and a CRP level > 165 mg/L as the two independent predictors. Patients with a score of 0 (neither factor) had a 12% conversion risk. This rose to 29% for those with one risk factor, and to a striking 67% for patients with both risk factors (age > 65 and CRP > 165 mg/L) [21,29,30].
- **CRP > 220 mg/L:** The analysis by Mok, *et al.* identified a cutoff of > 220 mg/L as a remarkably powerful predictor of conversion. Patients with a CRP above this threshold had a conversion rate of 61.9%, compared to only 3.2% for those with a CRP at or below 220 mg/L ($p < 0.001$). The ROC analysis for CRP alone in predicting conversion yielded an AUC of 0.925, which is considered "outstanding" diagnostic performance [21,29,30].

An apparent contradiction emerges when comparing findings across different studies. One retrospective cohort study focusing exclusively on mild Acute Biliary Pancreatitis (ABP) concluded that LC in this specific subgroup is “rarely difficult,” with only 5% of procedures meeting the criteria for difficulty (3 on the Nassar scale). This study also noted that some predictive scoring systems assign a low difficulty score to the indication of ABP. In contrast, another study on emergency cholecystectomies found that a diagnosis of “pancreatitis” was significantly associated with a difficult procedure on univariate analysis. This discrepancy is resolved by recognizing that the surgical difficulty is not dictated by the mere diagnosis of pancreatitis, but by its severity. The first study’s cohort was pre-selected for mild disease, a condition characterized by minimal local inflammation and a low systemic response, naturally leading to a less challenging operation. The second study included a broader spectrum of emergency patients, where the “pancreatitis” group likely encompassed a mix of mild, moderate, and severe cases. It is the severe inflammatory response in moderate-to-severe ABP, with its associated peripancreatic fluid, fat stranding, and intense local inflammation, that creates the difficult surgical field. Therefore, preoperative CRP becomes the critical differentiating tool. It allows the surgeon to distinguish between the patient with mild ABP who is likely to have a straightforward procedure and the patient with severe ABP, whose high CRP signals a high probability of a technically demanding operation with a significant risk of conversion [5,17,21,29,30].

Section 3: The predictive value of c-reactive protein for postoperative complications

The predictive utility of preoperative CRP is not confined to the intraoperative period. The level of systemic inflammation present before surgery is a powerful determinant of the patient’s subsequent clinical course. A high preoperative CRP indicates a patient who is already physiologically stressed, with diminished reserves to withstand the additional insult of surgery. This section evaluates the evidence for CRP’s role in forecasting adverse events after the cholecystectomy is completed, linking the preoperative inflammatory state to the postoperative trajectory, including the risk of specific complications and overall length of hospital stay.

Forecasting post-cholecystectomy pancreatitis

Laparoscopic cholecystectomy is the definitive treatment to prevent recurrent episodes of acute biliary pancreatitis. However, in a challenging clinical paradox, the surgical procedure itself can sometimes trigger a new or recurrent episode of pancreatitis, a complication known as post-cholecystectomy pancreatitis (PCP). Early identification of patients at high risk for this complication is a key clinical goal [1,6,8,34].

A large-scale retrospective cohort study by Liu, *et al.* involving 968 patients undergoing LC for gallstones, specifically aimed to develop a predictive model for post-LC pancreatitis. Their multivariate analysis identified several significant predictors of this complication, including a high baseline APACHE II score, the presence of choledocholithiasis, and, critically, biochemical markers including preoperative C-reactive protein. The comprehensive predictive model they developed, which incorporated CRP, demonstrated a high degree of discriminative ability, with an AUC of 0.949 in the training set and 0.922 in the external validation set [27].

The mechanism linking a high preoperative CRP to an increased risk of PCP is likely multifactorial. A high CRP signifies a persistent, heightened state of systemic and local inflammation. This “primed” inflammatory environment may render the pancreas more susceptible to the secondary insults associated with surgery, such as manipulation of the biliary tree or transient changes in perfusion. Furthermore, severe biliary inflammation is often associated with the presence of biliary sludge and microlithiasis, which may not be fully appreciated on preoperative imaging. During the surgical manipulation of the gallbladder and cystic duct, this sludge or these small stones can be inadvertently dislodged into the common bile duct. The subsequent passage of this material through the ampulla of Vater can cause transient obstruction and trigger a fresh episode of pancreatitis in the early postoperative period. In this context, a high preoperative CRP may act as an indirect marker for a higher-risk biliary system, one that is more likely to harbor the residual microlithiasis that can cause PCP. This suggests that for patients with very high preoperative CRP levels, surgeons should maintain a lower threshold for performing an intraoperative cholangiogram to ensure the common bile duct is clear of debris, potentially mitigating the risk of this specific and serious complication.

Predicting infectious morbidity and other adverse events

The influence of a high preoperative inflammatory state extends to a broader range of postoperative adverse events. Studies have shown that an elevated preoperative CRP is associated with a higher overall postoperative morbidity rate. A prospective observational study found that patients who experienced a difficult LC-a group strongly predicted by high preoperative CRP-also had an increased rate of postoperative complications, although the specific types of complications were not detailed in the summary.

The relationship between CRP and postoperative infectious complications is particularly well-established in the broader field of abdominal surgery. While most studies focus on the utility of postoperative CRP kinetics, their findings reinforce the biological link. A serum CRP level remaining above 150 mg/L on postoperative days 2 through 5 is highly predictive of an underlying infectious complication, such as an anastomotic leak or intra-abdominal abscess. It is logical to extrapolate that a high preoperative CRP also predisposes a patient to such events. A high preoperative inflammatory state often corresponds to more severe local pathology, such as gangrenous tissue or a higher bacterial load within the gallbladder, which increases the risk of contamination and subsequent surgical site infection.

While no study in the provided material directly links preoperative CRP levels to the incidence of postoperative bile leaks, CRP is a sensitive marker for detecting this complication once it has occurred. One case report detailed a patient who developed a symptomatic bile leak after LC, noting a progressive elevation of laboratory markers, including CRP, which rose to 217 mg/L. This demonstrates that an unexpected or sustained rise in CRP postoperatively should prompt an aggressive investigation for complications, including bile leakage.

CRP as a determinant of hospital length of stay (LOS)

The culmination of a difficult operation and a complicated postoperative course is inevitably a prolonged hospital stay. Preoperative CRP has been identified as a powerful and direct predictor of this crucial healthcare outcome metric. A recent retrospective cohort study by Mehmedović, *et al.* specifically investigated predictors of prolonged LOS in a cohort of 150 patients undergoing cholecystectomy for acute cholecystitis.

Their ROC curve analysis identified an optimal preoperative CRP cutoff of ≥ 110.5 mg/L for predicting prolonged LOS, demonstrating the highest predictive accuracy among laboratory markers with an AUC of 0.733. Critically, in their multivariate analysis, which adjusted for other variables, a preoperative CRP ≥ 110.5 mg/L remained the most reliable independent laboratory predictor of prolonged LOS ($p < 0.001$), outperforming both WBC count and total bilirubin. The presence of biliary complications, such as choledocholithiasis and Mirizzi syndrome, also independently predicted longer hospital stays.

The link between a high preoperative CRP and prolonged LOS is not merely a correlation but represents a clear causal pathway. A single high preoperative CRP value initiates a predictable cascade of events that logically culminates in a longer hospitalization. The high CRP predicts a more severe local inflammation, which in turn predicts a more difficult and longer operation, with a higher chance of conversion to an open procedure. A more complex or converted surgery is a greater physiological insult and is independently associated with a longer recovery period. Furthermore, the high preoperative CRP also predicts a higher risk of developing specific postoperative complications, such as PCP or infections. The occurrence of any such complication necessitates further treatment and monitoring, directly extending the length of stay. Thus, the preoperative CRP value serves as a remarkably comprehensive single data point, providing a forecast for the entire perioperative journey, from the complexity of the dissection in the operating room to the ultimate day of discharge [21,29,30,37].

Section 4: Synthesis and critical analysis: Establishing a clinically relevant framework

The preceding sections have established the robust predictive power of preoperative CRP for both intraoperative difficulty and postoperative complications. However, the translation of this evidence into clinical practice is challenged by the heterogeneity of findings,

particularly regarding specific CRP cutoff values. This section moves from data presentation to critical interpretation, addressing the sources of this heterogeneity, exploring the role of adjunctive markers, and ultimately proposing a practical, evidence-based framework for clinicians to use CRP in risk stratification.

Harmonizing the evidence: A critical analysis of CRP threshold heterogeneity

A systematic review of the literature reveals a wide spectrum of proposed CRP cutoff values for predicting adverse outcomes, ranging from as low as 11 mg/dL (110 mg/L) for difficult LC to as high as 220 mg/L for conversion to open surgery. This apparent discrepancy is not necessarily a sign of conflicting or flawed research but rather a reflection of several key sources of variation that must be understood to interpret the data correctly [2,9,11,21,29,30].

First, the patient population studied has a profound impact on the results. Studies focusing on a general cohort of emergency biliary admissions, which includes a mix of biliary colic, acute cholecystitis, cholangitis, and pancreatitis of varying severity, will naturally yield different predictive thresholds than studies focused on a more homogeneous group, such as only patients with mild ABP or only those with acute cholecystitis.

Second, the definition of the primary outcome is a major source of heterogeneity. The term “difficult laparoscopic cholecystectomy” is not universally defined. A study that defines difficulty based on a relatively low bar, such as an operative time exceeding 60 minutes, will identify a lower, more sensitive CRP cutoff. In contrast, a study that uses the very high bar of conversion to open surgery as its endpoint will identify a higher, more specific CRP cutoff. The cutoff of 90 mg/L identified by Ng, *et al.* was optimized to predict Nassar grades IV-V, a specific measure of high difficulty, while the 220 mg/L cutoff from Mok, *et al.* was optimized to predict the most extreme outcome of conversion [4,5,16,17,21,29,30].

Third, the timing of CRP measurement relative to the onset of symptoms can influence the absolute value and thus the optimal predictive threshold. Although most studies use a “preoperative” CRP, the interval between symptom onset, hospital admission, and the blood draw can vary, potentially affecting the CRP level’s position on its kinetic curve.

Therefore, the conclusion of this critical analysis is that the search for a single, universal CRP cutoff applicable to all patients is not a feasible or clinically useful endeavor. The true value of CRP lies not in a single number but in its interpretation within a specific clinical context and its application as part of a continuous spectrum of risk.

The role of adjunctive markers: Enhancing predictive accuracy

While CRP is a powerful standalone predictor, its diagnostic and prognostic accuracy can be further enhanced by incorporating it into multi-parameter models or by combining it with other biomarkers. Several studies have shown that predictive models that include CRP alongside other variables—such as WBC count, patient age, and a history of prior ERCP—demonstrate more robust performance than any single marker alone. The predictive model for post-LC pancreatitis, for example, integrated CRP with the APACHE II score and other clinical factors to achieve its high accuracy.

An emerging and particularly promising adjunctive marker is the CRP-to-Albumin Ratio (CAR). Serum albumin is a negative acute-phase reactant, meaning its levels decrease during inflammation. It is also a key indicator of a patient’s nutritional status and physiological reserve. The CAR, therefore, has the theoretical advantage of capturing two critical aspects of a patient’s condition simultaneously: the magnitude of the inflammatory insult (CRP) and the patient’s capacity to withstand it (albumin). An elevated CAR has been shown to be an independent predictor of conversion to open cholecystectomy. One study identified a preoperative CAR of ≥ 5.4 as a significant independent predictor of conversion in multivariate analysis. This suggests that for borderline cases, calculating the CAR may provide additional prognostic information to refine risk assessment [3,15,21,29,30].

A proposed risk stratification framework using preoperative CRP

Based on the synthesis of the available evidence, a practical, three-tiered risk stratification framework is proposed for clinical use in patients with ABP and related acute biliary conditions who are scheduled for laparoscopic cholecystectomy. This framework moves away from a single cutoff and instead utilizes CRP ranges to define levels of risk and guide clinical management.

Low risk (CRP < 50 mg/L):

- **Anticipated course:** The procedure is anticipated to be a straightforward laparoscopic cholecystectomy with a low probability of significant intraoperative difficulty or conversion. The risk of postoperative complications is minimal. This category aligns with the findings in cohorts with mild AGP, where surgery is rarely difficult [21,29,30].
- **Management recommendations:** These cases are suitable for routine scheduling. Under appropriate supervision, they may be considered for inclusion on a training list to facilitate resident education. Standard postoperative care and monitoring are typically sufficient.

Moderate risk (CRP 50 - 150 mg/L):

- **Anticipated course:** There is an increased likelihood of encountering moderate intraoperative difficulty, such as dense adhesions, inflammation obscuring Calot's triangle (corresponding to Nassar grades III-IV), and a prolonged operative time. There is a small but clinically significant risk of conversion to an open procedure. The risk of a prolonged hospital stay is moderate [5,17,21,29,30].
- **Management recommendations:** These cases should be scheduled with an adequate allocation of operating room time. An experienced laparoscopic surgeon should be readily available, either as the primary operator or for immediate consultation. The patient should be counseled about the potential for a more complex procedure and the possibility of conversion. In this range, calculation of adjunctive markers like the CAR may be particularly useful to further refine the risk assessment [21,29,30].

High risk (CRP > 150 mg/L):

- **Anticipated course:** There is a very high probability of severe local inflammation, potentially with gangrenous or necrotic changes, leading to a technically demanding dissection (Nassar grades IV-V). The risk of conversion to open surgery is substantial and increases dramatically as the CRP level rises, potentially exceeding 50% in patients with a CRP > 220 mg/L. There is a high risk of postoperative complications and a prolonged hospital stay [5,17,21,29,30].
- **Management recommendations:** This case should ideally be performed or directly supervised by a senior surgeon with significant experience in complex biliary surgery. The informed consent discussion must explicitly address the very high likelihood of conversion to an open procedure. The operating room should be prepared with a full set of open surgical instruments readily available. Surgeons should maintain a low threshold for performing an intraoperative cholangiogram to rule out occult CBD stones or sludge, which could contribute to post-LC pancreatitis. Postoperatively, these patients warrant intensive monitoring and a plan for potential admission to a higher level of care if needed [21,29,30].

Study ID/First Author
Ng., et al.
Mok., et al.
Abdelhamid., et al.
Liu., et al.
Wevers., et al.
Kaushik., et al.
Sharma., et al.
Mehmedović., et al.
Yilmaz., et al.
Abdelhamid., et al.

Table 1: Summary of key studies on the predictive value of CRP in laparoscopic cholecystectomy for biliary pancreatitis and related conditions.

Risk Tier
Low Risk
Moderate Risk
High Risk

Table 2: Clinically relevant CRP thresholds and associated risks in laparoscopic cholecystectomy for acute biliary pancreatitis.

Section 5: Clinical implications and recommendations for practice and future research

The synthesis of evidence presented in this report has significant and actionable implications for the clinical management of patients with acute biliary pancreatitis. The robust predictive power of preoperative CRP allows for a more nuanced and proactive approach to perioperative care. This final section translates the analytical findings into concrete recommendations for clinical practice and identifies critical knowledge gaps that should guide future research efforts [1,8].

Recommendations for preoperative planning and patient counseling

The routine measurement and interpretation of preoperative CRP should be considered a standard of care for patients admitted with ABP who are candidates for LC. The information derived from this simple blood test can profoundly influence surgical planning and resource allocation.

- **Surgical scheduling and surgeon assignment:** The proposed CRP-based risk stratification framework (Section a proposed risk stratification framework using preoperative CRP, Table 2) should be used to guide surgical scheduling. High-risk cases, defined by a CRP > 150 mg/L, should be allocated a greater amount of operating theatre time to account for a potentially long and complex procedure. Furthermore, these high-risk cases should be preferentially assigned to, or directly supervised by, senior surgeons with extensive experience in difficult laparoscopic biliary surgery. Conversely, low-risk cases (CRP < 50 mg/L) may be appropriate for more junior surgeons in a supervised training environment [4,16,17].
- **Informed consent:** The preoperative CRP value should be an integral part of the informed consent process. For patients in the moderate- and high-risk categories, the discussion should move beyond generic risks to provide a more personalized risk assessment. Specifically, patients with a high CRP should be explicitly counseled on the increased risks of a technically difficult dissection, a longer operation, and, most importantly, the significantly higher probability of conversion to an open procedure. This approach not only manages patient expectations more effectively but also strengthens the medico-legal integrity of the consent process [21,29,30].
- **Resource allocation:** On an institutional level, preoperative CRP can serve as a valuable tool for resource management. Anticipating a difficult case allows for better planning, ensuring that advanced laparoscopic equipment (e.g. energy devices, articulating instruments) and an open surgery set are readily available. For patients with very high CRP levels, who are also at higher risk for postoperative complications, this foreknowledge can prompt proactive communication with intensive care units regarding potential postoperative bed allocation.

Recommendations for postoperative monitoring

The predictive value of preoperative CRP extends into the postoperative period, allowing for a stratified approach to patient surveillance.

- **Stratified surveillance:** Patients who presented with a high preoperative CRP (e.g. > 150 mg/L) warrant more intensive postoperative monitoring, even if the surgery itself was completed laparoscopically without apparent incident. This includes closer observation of vital signs, meticulous monitoring of surgical drain outputs (if placed), and maintaining a lower threshold for re-

checking inflammatory markers (including CRP and WBC) and liver function tests if the patient's clinical course deviates from the expected recovery trajectory.

- **Early detection of complications:** A high preoperative CRP signals a patient who is at an elevated baseline risk for postoperative complications. A key principle of postoperative CRP kinetics is that levels should steadily decline after a successful and uncomplicated surgical intervention. A failure of the postoperative CRP to trend downwards, or a secondary rise after an initial fall, is a significant red flag and should trigger an aggressive and early search for an underlying complication, such as an intra-abdominal abscess, a bile leak, or post-cholecystectomy pancreatitis [6,34].

Directions for future research

While the current evidence is strong, several areas require further investigation to refine and validate the clinical use of CRP in this setting.

- **Prospective validation:** There is a compelling need for large, multicenter, prospective observational studies to validate the proposed CRP-based risk stratification framework. Such studies would provide the highest level of evidence and help to refine the specific CRP thresholds for each risk tier.
- **Standardization of definitions:** A major limitation in the current literature is the lack of a standardized definition for "difficult laparoscopic cholecystectomy." Future research must prioritize the use of validated, objective scoring systems, such as the Nassar scale, to ensure that outcomes are reported in a consistent and comparable manner. This standardization is essential for conducting meaningful meta-analyses in the future [4,5,16,17].
- **Dynamic CRP monitoring:** Most studies have focused on a single preoperative CRP value. Future research should investigate the predictive power of dynamic CRP monitoring. Tracking the trajectory of CRP from admission through the 48-hour mark and into the immediate postoperative period could create more sophisticated and accurate predictive models that capture the evolution of the patient's inflammatory response over time.
- **Role of adjunctive markers:** While the CRP-to-Albumin Ratio (CAR) and other novel biomarkers show promise, further studies are needed to clarify their precise added value over CRP alone in the specific context of laparoscopic cholecystectomy for acute biliary pancreatitis. Head-to-head comparisons in prospective trials are required to determine if the additional complexity of these markers is justified by a significant improvement in predictive accuracy [1,3,8,15].

Conclusion

This report concludes that the integration of preoperative CRP measurement into the clinical assessment of patients with ABP is essential for optimizing surgical planning, resource allocation, and patient management. It proposes a risk stratification framework to guide surgical scheduling, enhance the informed consent process by providing more accurate risk assessment, and tailor postoperative surveillance strategies. While CRP is a potent standalone marker, its predictive power can be augmented by its inclusion in multi-parameter models and through combination with other biomarkers, such as serum albumin. Future research should focus on the prospective validation of this framework and the standardization of outcome definitions to further refine the clinical application of this indispensable biomarker.

Bibliography

1. "Gallstone Pancreatitis: Definition, Symptoms & Treatment". Cleveland Clinic.
2. S Subramanian. "C reactive protein analysis in predicting the severity of acute pancreatitis - systematic review". *International Journal of Academic Medicine and Pharmacy* 6.2 (2024): 1172-1175.

3. Syed Jawad Haider Kazmi, *et al.* "Role of serum C-reactive protein (CRP)/Albumin ratio in predicting the severity of acute pancreatitis: A retrospective cohort". *Annals of Medicine and Surgery (London)* 82 (2022): 104715.
4. Gordon C Gregory, *et al.* "C-reactive protein is an independent predictor of difficult emergency cholecystectomy". *Cureus* 11.4 (2019).
5. Kam Wa Jessica Mok, *et al.* "Is C-reactive protein the single most useful predictor of difficult laparoscopic cholecystectomy or its conversion? A pilot study". *Journal of Minimal Access Surgery* 12.1 (2016): 26-32.
6. Dacheng Yue and Shixiang Hu. "Prediction for acute biliary pancreatitis after laparoscopic cholecystectomy". *Journal of Inflammation Research* 18 (2025): 8835-8849.
7. "CRP level as predictor of severity of acute pancreatitis".
8. Kyewhon Kim and Sung Bum Kim. "Predictors of severity of acute pancreatitis". *Gut and Liver* 17.4 (2023): 493-494.
9. Hongsheng Wu, *et al.* "Diagnostic value of CRP for predicting the severity of acute pancreatitis: a systematic review and meta-analysis". *Biomarkers* 29.7 (2024): 494-503.
10. Kundan Rai, *et al.* "Prediction of the grade of acute cholecystitis by plasma level of C-reactive protein and ESR". *International Surgery Journal* 12.3 (2025): 318-325.
11. Hongsheng Wu, *et al.* "Diagnostic value of CRP for predicting the severity of acute pancreatitis: a systematic review and meta-analysis". *Biomarkers* 29.7 (2024): 494-503.
12. Hongsheng Wu, *et al.* "Diagnostic value of CRP for predicting the severity of acute pancreatitis: a systematic review and meta-analysis". *Biomarkers* 29.4 (2024): 1-10.
13. Rami Ahmad, *et al.* "C-reactive protein as a predictor of complicated acute pancreatitis: reality or a myth?". *Cureus* 13.11 (2021): e19265.
14. Aaron Stirling, *et al.* "The predictive value of C-reactive protein (CRP) in acute pancreatitis – is interval change in CRP an additional indicator of severity?". *HPB* 19.10 (2017).
15. Masashi Utsumi, *et al.* "C-reactive protein-to-albumin ratio predicts conversion from laparoscopic to open cholecystectomy in acute cholecystitis". *In Vivo* 37.2 (2023): 887-893.
16. Sandeep Kumar, *et al.* "Preoperative c-reactive protein as a predictor of difficult laparoscopic cholecystectomy: a prospective observational analysis". *International Journal of Medical and Pharmaceutical Research* 6.5 (2025): 646-652.
17. H J Ng, *et al.* "C-reactive protein level as a predictor of difficult emergency laparoscopic cholecystectomy". *BJS Open* 3.5 (2019): 641-645.
18. Ishaan Maitra, *et al.* "Laparoscopic cholecystectomy for mild acute gallstone pancreatitis-indication itself is a good predictor of (minimal) intraoperative difficulty-a retrospective cohort study". *Turkish Journal of Surgery* 37.2 (2021): 103-108.
19. Arun Nair, *et al.* "Gall bladder wall thickness and C-reactive protein as a predictor of difficult laparoscopic cholecystectomy". *Journal of Medical and Scientific Research* 12.4 (2024): 291-297.
20. Shehroz Ashraf, *et al.* "C-reactive protein levels as a predictor of difficult laparoscopic cholecystectomy". *Annals of Pakistan Institute of Medical Sciences* 20.1 (2024): 546-549.
21. Jessica Mok, *et al.* "Is C-reactive protein the single most useful predictor of difficult laparoscopic cholecystectomy or its conversion? A pilot study". *Journal of Minimal Access Surgery* 12.1 (2016): 26-32.

22. HJ Ng, *et al.* "CRP determination as a predictive factor of difficult emergency laparoscopic cholecystectomy". *BJS Open* 3 (2019): 641-645.
23. Shashi Kant, *et al.* "To correlate the level of CRP in acute cholecystitis in predicting difficult laparoscopic cholecystectomy as elective procedure". *International Journal of Academic Medicine and Pharmacy* 7.4 (2025): 1136-1141.
24. C-reactive protein as a useful predictor of difficult laparoscopic cholecystectomy.
25. Sandeep Kumar, *et al.* "Preoperative c-reactive protein as a predictor of difficult laparoscopic cholecystectomy: a prospective observational analysis". *International Journal of Medical and Pharmaceutical Research* 6.5 (2025): 646-652.
26. Bhanu Kaushik, *et al.* "The role of C-reactive protein as a predictor of difficult laparoscopic cholecystectomy or its conversion". *International Surgery Journal* 5.6 (2018).
27. Reza Kianmanesh, *et al.* "C-reactive protein and digestive pathologies: A narrative review for daily clinical use". *Journal of Research in Medical Sciences* 30 (2025): 10.
28. Aarón Díaz-Flores, *et al.* "C-reactive protein as a predictor of difficult laparoscopic cholecystectomy in patients with acute calculous cholecystitis: a multivariate analysis". *Journal of Laparoendoscopic and Advanced Surgical Techniques* 27.12 (2017): 1263-1268.
29. Kevin P Wevers, *et al.* "Laparoscopic cholecystectomy in acute cholecystitis: c-reactive protein level combined with age predicts conversion". *Surgical Laparoscopy Endoscopy and Percutaneous Techniques* 23.2 (2013): 163-166.
30. Gordon C Gregory, *et al.* "C-reactive protein is an independent predictor of difficult emergency cholecystectomy". *Cureus* 11.4 (2019): e4573.
31. "C-reactive protein (CRP) as a predictive factor for difficulty of laparoscopic cholecystectomy". *The Medical Journal of Cairo University*.
32. Fawzy M Mustafa and Bahaa Saeda. "C-reactive protein (CRP) as a predictive factor for difficulty of laparoscopic cholecystectomy". *Medical Journal of Cairo University* 90 (2022).
33. "Acute pancreatitis after elective laparoscopic cholecystectomy: retrospective study". SAGES Abstract Archives.
34. Dacheng Yue and Shixiang Hu. "Prediction for acute biliary pancreatitis after laparoscopic cholecystectomy". *Journal of Inflammation Research* 18 (2025): 8835-8849.
35. Ketan Vagholfkar, *et al.* "Post cholecystectomy pancreatitis: a misleading entity". *International Surgery Journal* 3.2 (2016): 941-943.
36. Zlatan Mehmedovic, *et al.* "A rare case of biliary leakage after laparoscopic cholecystectomy-diagnostic evaluation and nonsurgical treatment". *Acta Informatica Medica* 23.2 (2015): 116-119.
37. Admir Abdić, *et al.* "C-reactive protein and biliary complications as independent predictors of hospital stay in acute cholecystitis". *Cureus* 17.7 (2025).